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Heat Transfer Mechanisms During Short-Duration 
Laser Heating of Thin Metal Films 
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A perturbation technique is used to simplify the generalized governing equations 
of the parabolic two-step model. The generalized form of the two-step model 
contains diffusion terms in both electron and lattice energy equations and 
assumes that incident laser radiation is absorbed by both electron gas and solid 
lattice to account for the thermal behavior of semiconducting and impure 
materials. The simplified perturbation technique is used to eliminate the coupling 
between the electron and the lattice energy equations when the temperature 
difference between the electron and the lattice is a small perturbed quantity, 
which is true in materials exhibiting high coupling factors. A mathematical 
criterion is derived to determine the conditions under which electron and lattice 
are in thermal equilibrium. It is found that five dimensionless parameters 
control the state of thermal equilibrium between the lattice and the electron. 

KEY WORDS: laser heating: nonequilibrium heating: pulse heating: thermal 
waves; thin metal Iilms. 

1. I N T R O D U C T I O N  

E n e r g y  t r a n s p o r t  d u r i n g  fast laser hea t ing  of  solids has  become  a very 
act ive research area  due  to the t r e m e n d o u s  app l i ca t ions  of  shor t -pu lse  
lasers in the f ab r i ca t ion  of  mic ros t ruc tu res ,  synthesis  o f  a d v a n c e d  mater ia l s ,  
m e a s u r e m e n t  of  th in-f i lm proper t ies ,  d iagnos t ics  of  mate r i a l ' s  s t ruc ture  
t r a n s f o r m a t i o n ,  m i c r o m a c h i n i n g ,  laser pa t t e rn ing ,  laser process ing  of  
d i a m o n d  films f rom c a r b o n  i o n - i m p l a n t e d  coppe r  subs t ra tes ,  a n d  laser 

surface h a r d e n i n g  [1,  2] .  
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There exist basically four models describing the mechanism of energy 
transport during short-pulse laser heating. The first is the parabolic one- 
step model, which is based on the classical Fourier conduction law. The 
second is the hyperbolic one-step model [3, 4], which was first postulated 
for gases by Maxwell I-5 ]. The third and fourth models are the parabolic 
two-step and the hyperbolic two-step models [2, 6, 7]. 

The first two models neglect the microscopic energy deposition process 
and use empirical laws to describe the energy transport in materials. The 
microscopic mechanisms of energy deposition become important when the 
heating process is very fast. Laser heating of metals consists of two major 
steps of microscopic energy transfer. Electrons in metals first absorb 
radiation energy and then transmit energy to the lattice through inelastic 
electron-phonon scattering processes. Depending on the value of the 
electron-phonon coupling factor, it takes about 0.1-1 ps for electrons and 
lattice to reach thermal equilibrium for typical metals. When the laser pulse 
duration is comparable to or less than this thermalization time, the 
electron and lattice are not in thermal equilibrium. In these situations, it is 
important to use the microscopic two-step models. 

The microscopic two-step model pioneered by Anisimov et al. [ 8 ] and 
advanced later by Fujimoto et al. [9]. The two-step model involves two 
coupled energy equations governing the heat transfer in the electron gas 
and the metal lattice. Many different assumptions limit the generality of the 
two-step models. These assumptions are that (a) electron-phonon interac- 
tion is the dominant scattering process for electrons, (b) the conduction of 
heat by phonons is negligible, and (c) the incident laser energy is totally 
absorbed by electron gas. In addition to the above limitations, it is not easy 
to solve the coupled energy equations even after eliminating the coupling 
between them. The elimination of the coupling between the two equations 
yields a single equation containing a higher-order mixed derivative in both 
time and space. The existence of such terms complicates the solution 
methodology. 

Now, return to the above three assumptions, especially the second and 
the third assumptions, which limit the validity of the two-step model. It is 
known that energy deposits into materials in different ways, depending on 
the nature of heating methods and the structure of materials. For example, 
it can deposit simultaneously on all energy carriers (e.g., electrons and 
phonons) through contact heating at surfaces or selectively on a particular 
group of carriers by radiation heating. Radiation heating excites free/bound 
electrons in metals but excites valence electrons or optical phonons in 
semiconductors. As a result, each of the energy equations of the two-step 
models must contain a source term to account for that part of incident 
radiation absorbed by its energy carriers which are electrons or phonons. 
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Also, assumption (b) is not justified for metals containing large amount of 
impurities or for semiconducting materials, where it is known that energy 
may be diffused by both solid lattice and electron gas in these materials. 

The electron-phonon coupling factor varies within a wide range of 
limits. Many metals have very low coupling factor. As an example, the 
coupling factor of gold is about 2.6 x 10t6W .m -3 . K -t. However, many 
other metals have a very high coupling factor. As an example, the coupling 
factor of vanadium is about 648 x 10 ~a W. m -3. K- t .  As the value of the 
coupling factor increases, the thermalization time, which is the time 
required for the electron and lattice to reach the thermal equilibrium state, 
decreases. This implies that the normalized temperature difference between 
the electron gas and the lattice becomes small but not negligible. This small 
temperature difference between the electron and the lattice is observed 
especially in materials having large coupling factors and when the laser 
duration time is long enough to enable the electron gas to give part of its 
energy to the solid lattice. When the temperature difference between the 
electron gas and the lattice becomes small enough, then this difference may 
be normalized in the form of a perturbed quantity. As a result, pertur- 
bation technique may be used to eliminate the coupling between the two 
energy equations. The elimination of this coupling produces two uncoupled 
partial differential equations which have the same order as the original 
coupled partial differential equations and which do not contain any mixed 
derivative terms. 

The aim of the present work is to present a simplified perturbation 
technique to reformulate the generalized governing equations of the 
parabolic two-step model. The generalized equations contain diffusion 
terms in both electron gas and solid lattice energy equations to account for 
the thermal behavior of semiconducting materials or impure metals. Also, 
the generalized governing equations assume that incident laser heating is 
absorbed by both electron gas and solid lattice. As a study case, we 
consider a simple problem which is solved analytically using the proposed 
perturbation technique. In addition, a mathematical criterion which deter- 
mine the parameters effects the state of thermal equilibrium between the 
electron and lattice is derived. 

2. ANALYSIS 

Consider applications involving short-pulse laser heating on metals. 
When the laser pulse duration is much shorter than the electron-phonon 
thermal relaxation time, the hot electrons do not have enough time to 
establish local thermal equilibrium with the lattice. Consequently, the 
electrons and the lattice have two different temperatures T~ and T~. This 
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nonequilibrium heating process can be modeled phenomenologically using 
the two-step model as 

C,(T~) ~ = V.  (K~VT~) - G( T, - T,) + FQ (1) 

8TL 
C,(T,) - ~  = V,  (K, VTt) + G( T~ -- TO + ( 1 -- F)  Q (2) 

where G is the coupling factor which characterizes the energy exchange 
between phonon and electrons and is given as [ 1, 2] 

rt4(ncv,k) 2 
G = (3)  Kr 

k , - -  I/3 
vs = 2-~h (6rt-n,) (4) 

Equations (1) and (2) represent the generalized form of the two-step 
model. This generalized form assumes that a fracton F of the incident 
energy Q is absorbed by the electron gas and the rest ( 1 -  F) of the inci- 
dent energy is absorbed by the lattice. In addition, the generalized model 
assumes that the diffused heat flux is carried by both free electrons and by 
the lattice. The inclusion of both the heating source term (1 - F )  Q and the 
diffusion term V-(K~VT0 into the energy equation of the lattice is impor- 
tant especially for applications involving the interaction of laser heating 
with metals containing a large amount of impurities, for some very 
particular metals, such as bismuth, or for semiconductors [ 10]. 

For pure metals, the incident radiation and the diffused heat flux are 
absorbed and diffused mainly by electrons, and as a result, Eqs. (1) and (2) 
are reduced to 

0To 
Cr162 - ~ -  = V. (K~VTe) -- G( Te - T,) + Q (5) 

8Ti 
CL( T L) ~ -  = G( T. - T0 (6) 

Laser heating of thin films may be modeled as a one-dimensional problem 
(Fig. 1 ), since the beam diameter is much larger than the heat penetration 
depth. In addition, the thermal properties Ce, Ct, Ke, and K~ are assumed 
to be constant. This assumption will not restrict the generality or the 
validity of the solution methodology proposed in the following analysis. 
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Laser Pulse Metal Film 
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Fig. 1. Schematic diagram for laser 
heating of a metal film. 
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Now, using the dimensionless parameters defined in the nomenclature, 
Eqs. (1) and (2) in their one-dimensional form may be rewritten as 

O0~ 020r 
Or O~ 2 H1(0r -- 0n) + FPr ~) (7) 

001 _ O20t 
O~ = 142 - ~  + H3( O~ - 0,) + (1 - F) P~(r, ~) (8) 

where 

GL 2 Kj C~ GL '-Cr LZQ(v, ~) 
Hi --  K~ ' H2  - Ke Ci,  H3 - Kr C~'  Pr = PI - Kr Ti 

Equations (7) and (8) are two coupled partial differential equations which 
are second order in space and first order in time. Elimination of the 
coupling between these equations yields a mixed derivative partial differen- 
tial equation which is fourth order in space and second order in time. The 
higher-order and mixed derivative terms that appear in the resulting 
equations raise the difficulty of solving such problems. However, in many 
applications, the coupling between the two energy equations, (7) and (8), 
may be eliminated without raising the order of the resulting partial differen- 
tial equations and without the appearance of mixed derivative terms. These 
applications involve situations in which the incident thermal radiation inter- 
acts with materials having a very large coupling factor or situations in which 
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the laser pulse duration is not too short. In these situations, the difference 
between the electron and the lattice temperature may be normalized in the 
form of a very small perturbed quantity. This difference may be written as 

(9) 

where 3(r,  r is a function of space and time, and e = 1/H~ is a dimension- 
less small parameter. 

Consider, for example, the interaction of a laser beam with a very thin 
lead film of 1 x I0 6-m thickness. For lead, the thermal conductivity and 
coupling factor have values of 3 5 W . m - t . K  ~ and 12.4x10~6W. 
m -3. K ~, respectively [ 1, 7]. Under these conditions, H~ = 3500, and as 
a result, e (=  1/H~) may be considered a very small perturbed quantity. 
Examples of other metals having a very large coupling factor (i.e., having 
a very small perturbed parameter e) are vanadium, niobium, and titanium. 

Now Eqs. (7) and (8) can be written as 

80~ 820r 
Or = H4-~5-+  CRPc('f, ~) (10) 

80~ 820~ 
3(r, ~ ) -  + --z-~ + FP~(r, ~) (11) 

Or 0 r  

where 

C~ K ~ + K  I C~ 
H4 - C~ + Ci K~ ' Ctr = C~ + Cj 

Equation (10) is obtained by combining Eqs. (7) and (8), and E q . ( l l )  
is Eq.(7) with regard to Eq.(9). It is clear that Eq.(10) is a simple 
partial differential equation which has the same order as that of the original 
governing Eqs. (7) and (8) and which has no mixed derivative terms. It is 
worth mentioning that the previous analysis is valid even if the original 
governing equations, (1) and (2), contain temperature-dependent thermal 
properties. 

3. CASE STUDY 

Consider the interaction of a short-pulse laser beam with a pure metal 
film having high coupling factor G. The metal film, which is of thickness L, 
is analyzed on the basis of a one-dimensional model, since the beam 
diameter is typically much larger than the heat diffusion penetration depth 
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in a very short time. By neglecting the temperature dependence of thermal 
properties, the governing equations are Eqs. (10) and (11). The heating 
source term in these equations is given in dimensionless form as [2, 6, 7] 

L 2 
PC(r, ~) = ~ ( 1 - R) I~ exp -~cr exp - ,t.o8 exp 2"77'12 exp ' '~ (12) 

where r/= r/zp and rp is the dimensionless pulse duration time. In Eq. (12) 
we have made a phase shift in time in the form z = ~ + 2. This shift is done 
to enable us to take the initial conditions at time 0. Without this phase 
shift in time, researchers usually take the initial conditions as f = -2 .  As 
a result of this phase shift, the initial and boundary conditions of the 
problem are given as 

0j0, ~)--0,(0, ~)=0 (13) 

00t(r, 0) 00~(t, 1) 00r 0) 00~(v, 1)=0 (14) 

The solution of Eq. (10) is obtained using Green's function method. This 
solution assumes the form [ 11 ] 

0e(~', ~) : C R *=o ~*=0 ,, =o N(fl,,) exp 

X COS(flm~ ) COS(~n,~*)Pc(z*, ~ * ) d ~ * d r *  (15) 

where 

flm=mg, N(flm)=0.5,  N ( 0 ) = I  

Inserting the heating source term from Eq. (12) into Eq. (15) and carrying 
out the required manipulation yield 

rs_ 1 
0c(z '~ )=A ~ N(flm---'~ exp HJ%rCOS(flm~)Dmx//-'~ 

I t  ~ 0  

x exp~'-"~ I e r f /7  x/~ + ~ - ~ )  - erf(7 x/~) 1 (16) 
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where 

D m  = 
La[ 1 -exp-~L cos(ran)] CR L2  

, A = K---~i (1 - R ) I o ~  o~2Z 2 -f- m2;,T 2 

11.08 r 2 
~' = - - H 4 m 2 ~  2 - - - - ,  6 = P 

rp 11.08 

Expression for 0,(t, ~) is obtained from Eq. (9), where A(T, ~) is obtained 
from Eqs. (11) and (16) as 

zl(r,  ~ ) = A ( H  4 - -  1),,,~-- o N(f lm)  

x exps I erf (Y x/~ + ~ f ~ )  -- erf(}' v/'~) ] 

- A N( f l ,n )  exp cos(flm~) Dm m=O 
• exp s exp [~.,/~+ ~ "-,/~1-" + p~(r, ~)  

- -  (m2~ 2) e x p  Hj.,~ c o s ( f l . , ~ )  Dm 

(17) 

In the previous solution, it is assumed that the incident laser radiation is 
totally absorbed by the electron gas, which is the case for pure metal films, 
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Fig. 2. The dynamic response of tile electron temperature 0~ at difl'erent 
duration times. 
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Fig. 3. The dynamic response of the temperature diflerence function A 
at difl'erent duration times. 
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and as a result F = 1 in Eq. ( 11 ). A sample of the results is plotted in Figs. 2 
and 3, which show the dynamic response of both the dimensionless electron 
temperature and the dimensionless temperature difference A at a given 
location of the metal film. 

4. T H E R M A L  E Q U I L I B R I U M  CRITERION 

In the following section, a mathematical criterion is derived to deter- 
mine the conditions under which both the electron gas and the lattice are 

in thermal equilibrium. 
Let us assume that electron and lattice are in thermal equilibrium if 

the maximum temperature difference (0~-0~)  ..... is less than a certain 
dimensionless difference q. As a result, 

A <~ qHi (18) 

Substituting for A from Eq.(17) yields the required general criterion. 
However, it can be shown that the difference function A has its maximum 
absolute value A ...... at ~ = 0 and r = 2%. Also, it is clear from Fig. 2 that 
rp has a weak effect on A ...... . As a result, the thermal equilibrium criterion 

given in Eq. (18) is written as 
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A ( H a -  1),,~=o ~ 1  (m2rt-')N(flm) exp 2nd~'~Dm x//-~ 

x exp?'~ [ erf ()' v/~ + ~ )  - erf(7 ,r ] 

--A ~ exp "-nJ"a,~pD m 
N(fl,,) t~t == 0 

z- A x exp ~ ~' exp - ~ r ,/5 + ~,.,/al-' + ~ ~< r/H, (19) 

If the criterion expressed by Eq. (18) or (19) is satisfied, one may assume 
that 0~:~ 0~. As a result, Eqs. (7) and (8) may be combined to yield the 
classical energy equation, which is derived based on the classical Fourier 
law. 

It is clear from Eq. (19) that five dimensionless parameters control 
the thermal equilibrimn state between the electron and the lattice. These 
parameters are Ha, 0~L, CR, Hi ,  and A. 

5. CONCLUSION 

A perturbation technique is used to simplify the generalized governing 
equations of the parabolic two-step model. The generalized form of the 
two-step model contains diffusion terms in both electron and lattice energy 
equations and assumes that incident laser radiation is absorbed by both 
electron gas and solid lattice to account for the thermal behavior of semi- 
conducting and impure materials. The simplified perturbation technique is 
used to eliminate the coupling between the electron and the lattice energy 
equations when the temperature difference between the electron and the 
lattice is a small perturbed quantity, which is true in materials exhibiting 
high coupling factors. The elimination of this coupling produces two 
uncoupled partial differential equations which have the same order as the 
original coupled partial differential equations and which do not contain 
any mixed derivative terms. A mathematical criterion is derived to deter- 
mine the conditions under which electron and lattice are in thermal equi- 
librium. It is found that five dimensionless parameters control the state of 
thermal equilibrium between the lattice and the electron. These parameters 
are expressed in terms of the dimensionless coupling factor H~, dimension- 
less radiation absorption coefficient ~L, heat capacity ratio CR, product of 
the heat capacity and thermal conductivity ratios H4, and dimensionless 
fraction of the absorped incident radiation A. The approach adopted in 
this work is used in metal films having a high coupling factor between the 
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electrons and the lattice. Examples of metal films having such a high coupling 
factor are vanadium, lead, and titanium. 

N O M E N C L A T U R E  

C Heat  capacity, J .  m - 3. K - 
F Fraction of incident laser energy absorbed by electron gas 
G Electron-phonon coupling factor, W.  m -  3. K - t 
h Planck constant, J .  s 
I Laser intensity, W.  m -2 
k Boltzmann constant, J . K  t 
K Thermal conductivity, W.  m t. K -  
L Film thickness, m 
n~ Electron number density per unit volume 
n~, Atomic density per unit volume 
P Dimensionless source term 
Q Source term, W.  m - 3  
R Metal surface reflectivity 
t Time, s 
tp Laser pulse duration, s 
T Temperature,  K 
T~ Initial temperature of both lattice and electron gas, K 
TD Debye temperature, K 
v~ Speed of sound, m .  s -  
x Spatial coordinate, m 

Greek Symbols 

Radiation absorption coefficient, m -  
A Difference function 
e Dimensionless small parameter 

Dimensionless spatial coordinate, x/L 
0 Dimensionless temperature, (T-  T~)/Ti 
r Dimensionless time, tK~/(L2C~) 
rp Dimensionless laser pulse duration time, tpK~/(L2C~) 

Subscripts 

a Atom 
e Electron 
i Initial 
1 Lattice 
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